salut! Nous - les scientifiques du laboratoire d'apprentissage automatique de l'ITMO et l'équipe Core ML de VKontakte - effectuons des recherches conjointes. L'une des tâches importantes de VK est la classification automatique des messages: il est nécessaire non seulement de générer des flux thématiques, mais également d'identifier les contenus indésirables. Les évaluateurs sont impliqués dans ce traitement des enregistrements. Dans le même temps, le coût de leur travail peut être considérablement réduit en utilisant un paradigme d'apprentissage automatique tel que l'apprentissage actif.
Il s'agit de son application pour la classification des données multimodales qui sera abordée dans cet article. Nous vous parlerons des principes généraux et des méthodes d'apprentissage actif, des particularités de leur application à la tâche, ainsi que des connaissances obtenues au cours de la recherche.
introduction
— machine learning, . , , , .
, (, Amazon Mechanical Turk, .) . — reCAPTCHA, , , , — Google Street View. — .
Amazon DALC (Deep Active Learning from targeted Crowds). , . Monte Carlo Dropout ( ). — noisy annotation. , « , », .
Amazon . : / . , , . , : , . .
. 1. pool-based
. , , ( ). : , .
, — . (. — query). , . ( , ) .
, , .
, — . ( ). ≈250 . . () 50 — — :
- , (. embedding), ;
- .
, (. . 2).
. 2 —
ML — . , .
. , . , , , . , , early stopping. , .
. residual , highway , (. encoder). , (. fusion): , .
— , . -.
, — , . , .
. , (. 3):
. 3.
. , . , , . , ( + ) — .
, . 3, :
. 4.
, , . , ó , , .
, : ? :
- ;
- ;
- .
. : maximum likelihood , - . :
— ( -), — , .
Pool-based sampling
— , . pool-based sampling :
- - .
- .
- , , .
- .
- ( ).
- 3–5 (, ).
, 3–6 — .
, , :
, . , : . , , , . . , 2 000.
. , . ( ). , , . , . 20 .
. , . — , . 100 200.
, , , .
№1: batch size
baseline , ( ) (. 5).
. 5. baseline- .
random state. .
. «» , , .
, (. batch size). 512 — - (50). , batch size . . :
- upsample, ;
- , .
batch size: (1).
— batch size, — .
“” (. 6).
. 6. batch size (passive ) (passive + flexible )
: c . , , batch size . .
.
Uncertainty
:
1. (. Least confident sampling)
, :
— , — , — , — , .
. , . , . .
. , : {0,5; 0,49; 0,01}, — {0,49; 0,255; 0,255}. , (0,49) , (0,5). , ó : . , .
2. (. Margin sampling)
, , , :
— , — .
, . , . , , MNIST ( ) — , . .
3. (. Entropy sampling)
:
— - .
, , . :
- , , ;
- , .
(. 7).
. 7. uncertainty sampling ( — , — , — )
, least confident entropy sampling , . margin sampling .
, , : MNIST. , , entropy sampling , . , .
. , — , — . , .
BALD
, , — BALD sampling (Bayesian Active Learning by Disagreement). .
, query-by-committee (QBC). — . uncertainty sampling. , . QBC Monte Carlo Dropout, .
, , — . dropout . dropout , ( ). , dropout- (. 8). Monte Carlo Dropout (MC Dropout) . , . ( dropout) Mutual Information (MI). MI , , — , . .
. 8. MC Dropout BALD
, QBC MC Dropout uncertainty sampling. , (. 9).
. 9. uncertainty sampling ( QBC ) ( — , — , — )
BALD. , Mutual Information :
— , — .
(5) , — . , , . BALD . 10.
. 10. BALD
, , .
query-by-committee BALD , . , uncertainty sampling. , — , — , — , — , .
BALD tf.keras, . PyTorch, dropout , batch normalization , .
№2: batch normalization
batch normalization. batch normalization — , . , , , , batch normalization. , . , . BALD. (. 11).
. 11. batch normalization BALD
, , .
batch normalization, . , .
Learning loss
. , . , .
, . — . , . learning loss, . , (. 12).
. 12. Learning loss
learning loss . .
. , . «» learning loss: , , . ideal learning loss (. 13).
. 13. ideal learning loss
, learning loss.
, . , , - , . :
- (2000 ), ;
- 10000 ( );
- ;
- ;
- 100 ;
- , , 1;
- .
, , . , ( margin sampling).
1.
p-value | ||
---|---|---|
loss | -0,2518 | 0,0115 |
margin | 0,2461 | 0,0136 |
, margin sampling — , , , . c .
: ?
, , (. 14).
. 14. ideal learning loss ideal learning loss
, MNIST :
2. MNIST
p-value | ||
---|---|---|
loss | 0,2140 | 0,0326 |
0,2040 | 0,0418 |
ideal learning loss , (. 15).
. 15. MNIST ideal learning loss. — ideal learning loss, —
, , , , . .
learning loss , uncertainty sampling: , — , — . , , . , .
, . . , margin sampling — . 16.
. 16. ( ) , margin sampling
: ( — margin sampling), — , , . ≈25 . . 25% — .
, . , , .
, , . , :
- batch size;
- , , — , batch normalization.