Quelle est la gravité du mouvement

Dans une bonne ville prĂšs de Moscou, il y a un mauvais passage Ă  niveau. Aux heures de pointe, non seulement il monte, mais aussi les intersections et les routes voisines. Au volant encore une fois, je me suis demandĂ© - quelle est sa capacitĂ© et quelque chose peut-il ĂȘtre changĂ©?



En mouvement



Pour répondre à cette question, nous allons nous plonger un peu dans la réglementation et la théorie des flux de trafic, analyser les données GPS et accéléromÚtre à l'aide de Python et comparer les calculs théoriques avec les données expérimentales.



Contenu





1.



, 10 /. .



Jupyter Notebook GitHub'.



En mouvement



:



import pandas as pd
import numpy as np
import glob

#!pip install utm
import utm

from sklearn.decomposition import PCA
from scipy import interpolate

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(rc={'figure.figsize':(12, 8)})
import plotly.express as px

#  Mapbox    Plotly
mapbox_token = open('mapbox_token', 'r').read()


2.



.

ρ — 1 .

v — .



Q(ρ) — , .



P — , - .



:



Q=V⋅ρ



Q(ρ) .



« » . , 2005 . , .



Schéma fondamental





218.2.020-2012 " ".



, :



PF...P...=PrĂ©â‹…ÎČ1F...P...⋅ÎČ2F...P...⋅ÎČ3F...P...⋅ÎČ4F...P...⋅ÎČcinqF...P...,



ÎČ1F...P...,ÎČ2F...P...,ÎČ3F...P...,ÎČ4F...P...,ÎČcinqF...P... — , , , .



, :



PF...P...=1500⋅0,93⋅0,66⋅0,8⋅1⋅1=736,56etàt.../h=12,3etàt.../metn



, , .



2 :



  • ;
  • .


:



  • :


ρ(v)=1rĂ©(v),

ré(v)=L+c1v+c2v2,



rĂ©(v) – () , L – , c1 – , , c2 — . ( ): L=5,7m,c1=0,504c,c2=0,0285de2/m.



  • :


ρ=ρmuneX(1-vvmuneX),



ρmuneX — ( ), vmuneX — () ( ). 218.2.020-2012 — ρmuneX=85etĂ t.../Ă m,vmuneX=60Ă m/h



#      
diagram1 = pd.read_csv('  .csv', sep=';', header=None, names=['P', 'V'], decimal=',')
diagram1_func = interpolate.interp1d(diagram1['P'], diagram1['V'], kind='cubic')
diagram1_xnew = np.arange(diagram1['P'].min(), diagram1['P'].max())

#     
diagram2 = pd.read_csv(' .csv', sep=';', header=None, names=['P', 'Q'], decimal=',')
diagram2_func = interpolate.interp1d(diagram2['P'], diagram2['Q'], kind='cubic')
diagram2_xnew = np.arange(diagram2['P'].min(), diagram2['P'].max())


def density_Tanaka(V):
    #     

    V = V * 1000 / 60 / 60 #  /  /
    L = 5.7 # 
    c1 = 0.504 # 
    c2 = 0.0285 #**2/

    return 1000 / (L + c1 * V + c2 * V**2) # ./

def density_Grindshilds(V):
    #      

    pmax = 85 # ./
    vmax = 60 # /

    return pmax * (1 - V / vmax) # ./


#  
V = np.arange(1, 80) # /
V1 = np.arange(1, 61) # /

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))

ax1.plot(density_Tanaka(V), V, label=" ")
ax1.plot(density_Grindshilds(V1), V1, label=" ")
ax1.plot(diagram1_xnew, diagram1_func(diagram1_xnew), label=".  ")
ax1.set_xlabel(r' $\rho$, /')
ax1.set_ylabel(r' $V$, /')
ax1.legend()

ax2.plot(density_Tanaka(V), density_Tanaka(V) * V, label=" ")
ax2.plot(density_Grindshilds(V1), density_Grindshilds(V1) * V1, label=" ")
ax2.plot(diagram2_xnew, diagram2_func(diagram2_xnew), label=".  ")
ax2.set_xlabel(r' $\rho$, /')
ax2.set_ylabel(r' $Q$, /')
ax2.legend()

plt.show()


Diagrammes



. .



3.



3.1



, . Enter, :



%%writefile "key-logger.py"
import pandas as pd
import time
import datetime

class _GetchUnix:
    # from https://code.activestate.com/recipes/134892/
    def __init__(self):
        import tty, sys

    def __call__(self):
        import sys, tty, termios
        fd = sys.stdin.fileno()
        old_settings = termios.tcgetattr(fd)
        try:
            tty.setraw(sys.stdin.fileno())
            ch = sys.stdin.read(1)
        finally:
            termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
        return ch

def logging():
    path = 'logs/keylog/'
    filename = f"{time.strftime('%Y-%m-%d %H-%M-%S')}.csv"
    path_to_file = path + filename
    db = []
    getch = _GetchUnix()
    print('...')
    while True:
        key = getch()
        if key == 'c':
            break
        else:
            db.append((datetime.datetime.now(), key))
    df = pd.DataFrame(db, columns=['time', 'click'])
    print(df)
    df.to_csv(path_to_file, index=False)
    print(f"\nSaved to {filename}")

if __name__ == "__main__":
    logging()


20 . 2 , . . 100%:



files = glob.glob('logs/keylog/*.csv')
keylogger_data = []
print(f'  - {len(files)} .')
for filename in files:
    df = pd.read_csv(filename, parse_dates=['time'])
    keylogger_data.append(df)
keylogger_data = pd.concat(keylogger_data, ignore_index=True)
keylogger_data.head()




time click
0 2020-09-29 16:24:02.691189 d
1 2020-09-29 16:24:05.186670 a
2 2020-09-29 16:24:07.157702 d
3 2020-09-29 16:24:11.506961 a
4 2020-09-29 16:24:14.206266 a




"a" — , 'd' — .

:



keylogger_data['time'] = keylogger_data['time'].astype('datetime64[m]')
keylogger_per_min = keylogger_data.groupby(['click', 'time'], as_index=False).size().reset_index().rename(columns={0:'size'})
keylogger_per_min.head()




index click time size
0 0 a 2020-09-29 16:24:00 12
1 1 a 2020-09-29 16:25:00 13
2 2 a 2020-09-29 16:26:00 9
3 3 a 2020-09-29 16:27:00 18
4 4 a 2020-09-29 16:28:00 14




sns.catplot(x='click', y='size', kind="box", data=keylogger_per_min);


png



print(f"  : {keylogger_per_min['size'].mean():.1f} ./ \
 {keylogger_per_min['size'].mean() * 60:.1f} ./")


: 11.7 ./ 700.0 ./

.

— 700 ./ 10 / ( 50 / ) — .



plt.plot(V1, density_Grindshilds(V1)*V1, label=" ")
plt.xlabel(r' $V$, /')
plt.ylabel(r' $Q$, /')
plt.show()


Grindshilds_model



3.2



Android GPSLogger csv . ( ) GPS — Physics Toolbox Suite.



50 . — .



, — .



GPSLogger



GPSLogger , :



  • time — ;
  • lat lon — , ;
  • speed — , m/de2;
  • direction — , .


files = glob.glob('logs/gps/*.csv')
gpslogger_data = []
print(f'    GPS - {len(files)} .')
for filename in files:
    df = pd.read_csv(filename, parse_dates=['time'], index_col='time')
    if df.iloc[10, 1] < df.iloc[-1, 1]:
        df['direction'] = 0 #  
    else:
        df['direction'] = 1 #  
    gpslogger_data.append(df)
gpslogger_data = pd.concat(gpslogger_data)
gpslogger_data.head()

gps_1 = gpslogger_data[['lat', 'lon', 'speed', 'direction']]


GPS — 37 .



Physics Toolbox Suite:



files = glob.glob('logs/gps_accel/*.csv')
print(f'     - {len(files)} .')
pts_data = []

for filename in files:
    df = pd.read_csv(filename, sep=';',decimal=',')
    df['time'] = filename[-22:-12] + '-' + df['time']
    if df.iloc[10, 5] < df.iloc[-1, 5]:
        df['direction'] = 0 #  
    else:
        df['direction'] = 1 #  
    pts_data.append(df)
pts_data = pd.concat(pts_data)
pts_data.head()


— 14 .





time ax ay az Latitude Longitude Speed (m/s) Unnamed: 7 direction
0 2020-09-04-14:11:18:029 0.0 0.0 0.0 0.000000 0.00000 0.0 NaN 1
1 2020-09-04-14:11:18:030 0.0 0.0 0.0 56.372343 37.53044 0.0 NaN 1
2 2020-09-04-14:11:18:030 0.0 0.0 0.0 56.372343 37.53044 0.0 NaN 1
3 2020-09-04-14:11:18:094 0.0 0.0 0.0 56.372343 37.53044 0.0 NaN 1
4 2020-09-04-14:11:18:094 0.0 0.0 0.0 56.372343 37.53044 0.0 NaN 1




, — :



pts_data = pts_data.query('Latitude != 0.')


Physics Toolbox Suite 400 , GPS 1 , :



pts_data['time'] = pd.to_datetime(pts_data['time'], format='%Y-%m-%d-%H:%M:%S:%f')
pts_data = pts_data.rename(columns={'Latitude':'lat', 'Longitude':'lon', 'Speed (m/s)':'speed'})


:



accel_data = pts_data[['time', 'lat', 'lon', 'ax', 'ay', 'az', 'direction']].copy()
accel_data = accel_data.set_index('time')
accel_data['direction'] = accel_data['direction'].map({1.: ' ', 0.: ' '})
accel_data.head()




lat lon ax ay az direction
time
2020-09-04 14:11:18.030 56.372343 37.53044 0.0 0.0 0.0
2020-09-04 14:11:18.030 56.372343 37.53044 0.0 0.0 0.0
2020-09-04 14:11:18.094 56.372343 37.53044 0.0 0.0 0.0
2020-09-04 14:11:18.094 56.372343 37.53044 0.0 0.0 0.0
2020-09-04 14:11:18.095 56.372343 37.53044 0.0 0.0 -0.0




GPS:



gps_2 = pts_data[['time', 'lat', 'lon', 'speed', 'direction']].copy()
gps_2 = gps_2.set_index('time')
gps_2 = gps_2.resample('S').mean()
gps_2 = gps_2.dropna(how='all')
gps_2.head()




lat lon speed direction
time
2020-08-10 00:45:02 56.338342 37.522946 0.0 1.0
2020-08-10 00:45:03 56.338342 37.522946 0.0 1.0
2020-08-10 00:45:04 56.338342 37.522946 0.0 1.0
2020-08-10 00:45:05 56.338342 37.522946 0.0 1.0
2020-08-10 00:45:06 56.338342 37.522946 0.0 1.0




GPS :



gps_data = gps_1.append(gps_2, ignore_index=True)
gps_data['direction'] = gps_data['direction'].map({1.: ' ', 0.: ' '})
gps_data.head()




lat lon speed direction
0 56.167241 37.504026 19.82
1 56.167051 37.503804 19.36
2 56.166884 37.503667 19.62
3 56.166718 37.503554 19.35
4 56.166570 37.503427 19.12




3.2.1



Plotly:



fig = px.scatter_mapbox(gps_data, lat="lat", lon="lon", color='direction', zoom=17, height=600)
fig.update_layout(mapbox_accesstoken=mapbox_token, mapbox_style='streets')
fig.show()


Carte



3.2.2



:



  1. GPS, WGS 84 .
  2. .


Web Mercator, — , , .



, . — , — (UTM).



Web-Mercator

Projection Web-Mercator



UTM

Projection UTM



UTM Python https://github.com/Turbo87/utm, .



gps_data['xs'] = gps_data[['lat', 'lon']].apply(lambda x: utm.from_latlon(x[0], x[1])[0], axis=1)
gps_data['ys'] = gps_data[['lat', 'lon']].apply(lambda x: utm.from_latlon(x[0], x[1])[1], axis=1)
gps_data['speed_kmh'] = gps_data.speed / 1000 * 60 * 60


50 :



#  
lat0 = 56.35205
lon0 = 37.51792
xc, yc, _, _ = utm.from_latlon(lat0, lon0)

r = 50
gps_data = gps_data.query(f'{xc - r} < xs & xs < {xc + r}')\
                   .query(f'{yc - r} < ys & ys < {yc + r}')


fig = px.scatter_mapbox(gps_data, lat="lat", lon="lon", color='direction', zoom=17, height=600)
fig.update_layout(mapbox_accesstoken=mapbox_token, mapbox_style='streets')
fig.show()


Carte

. 2d 1d, (PCA).



2 — scikit-learn. Sklearn:



pca = PCA(n_components=1).fit(gps_data[['xs', 'ys']])
gps_data['xs_transform'] = pca.transform(gps_data[['xs', 'ys']])


sns.relplot(x='xs_transform', y='speed_kmh', data=gps_data, aspect=2.5, hue='direction');


png



. — [-5, 25]. .



accel_data['xs'] = accel_data[['lat', 'lon']].apply(lambda x: utm.from_latlon(x[0], x[1])[0], axis=1)
accel_data['ys'] = accel_data[['lat', 'lon']].apply(lambda x: utm.from_latlon(x[0], x[1])[1], axis=1)
accel_data = accel_data.query(f'{xc - r} < xs & xs < {xc + r}')\
                       .query(f'{yc - r} < ys & ys < {yc + r}')
accel_data['xs_transform'] = pca.transform(accel_data[['xs', 'ys']])


Android :

Axes de l'accéléromÚtre



( Y). :



sns.relplot(x='xs_transform', y='ax', data=accel_data, aspect=2.5, hue='direction');


png



sns.relplot(x='xs_transform', y='ay', data=accel_data, aspect=2.5, hue='direction');


png



sns.relplot(x='xs_transform', y='az', data=accel_data, aspect=2.5, hue='direction');


png



Z:



sns.relplot(x='xs_transform', y='az', data=accel_data.query('-20 < xs_transform < 40'), aspect=2.5, hue='direction');


png



X Z — [-10, 25] 7.5.



cross = gps_data.query('-10 < xs_transform < 25')


fig = px.scatter_mapbox(cross, lat="lat", lon="lon", color='direction', zoom=19, height=600)
fig.update_layout(mapbox_accesstoken=mapbox_token, mapbox_style='streets')
fig.show()


Carte



:



mean_v = cross.speed_kmh.mean()
print(f"    - {mean_v:.2} /")
sns.distplot(cross.speed_kmh);


— 9.4 /



png



:



base = 1
gps_data['xs_transform_round'] = gps_data['xs_transform'].apply(lambda x: base * round(x / base))
accel_data['xs_transform_round'] = accel_data['xs_transform'].apply(lambda x: base * round(x / base))


sns.relplot(x='xs_transform_round', y='speed_kmh', data=gps_data, kind="line", aspect=2.5);


png



sns.relplot(x='xs_transform_round', y='az', data=accel_data, kind="line", aspect=2.5);


png



3.3



:



gps_data['flow_Tanaka'] = density_Tanaka(gps_data.speed_kmh) * gps_data.speed_kmh
gps_data['flow_Grindshilds'] = density_Grindshilds(gps_data.speed_kmh) * gps_data.speed_kmh


sns.relplot(x='xs_transform_round', y='flow_Grindshilds', data=gps_data, aspect=2.5, kind='line', hue='direction');


png



cross = gps_data.query('-10 < xs_transform < 25')


mean_flow_Tanaka = cross.flow_Tanaka.mean()
print(f"      - {mean_flow_Tanaka:.1f} / \
 {mean_flow_Tanaka / 60:.1f} /")


— 1275.5 / 21.3 /



mean_flow_Grindshilds = cross.flow_Grindshilds.mean()
print(f"      - {mean_flow_Grindshilds:.1f} / \
 {mean_flow_Grindshilds / 60:.1f} /")


— 660.0 / 11.0 /

, 700 ./.



plt.plot(V1, density_Grindshilds(V1)*V1, label=" ")
plt.xlabel(r' $V$, /')
plt.ylabel(r' $Q$, /')
plt.show()


png



, - 30 / — .



, :



PF...P...=1500⋅0,93⋅0,98⋅0,8⋅1⋅1=1093,7etàt.../h=18,3etàt.../metn



" / ".



4.



Sur la base de notre analyse, on peut affirmer que le passage à niveau est dans un état insatisfaisant et que le débit est d'environ 10 km / h, ce qui, lorsque la route est entiÚrement chargée, entraßne des problÚmes de circulation et des embouteillages.



Le dĂ©bit du passage Ă  niveau peut ĂȘtre considĂ©rablement augmentĂ© en amenant le passage Ă  un Ă©tat satisfaisant.




All Articles