Implémentation de pooling RoI dans TensorFlow + Keras

Bonjour, Habr! Je présente à votre attention la traduction de l'article "Implémentation de RoI Pooling dans TensorFlow + Keras" de Jaime Sevilla.



Je suis actuellement en train de suivre un cours d'apprentissage automatique. Dans le bloc de formation "Vision par ordinateur", il était nécessaire d'étudier le regroupement RoI des couches. L'article ci-dessous m'a semblé intéressant et j'ai donc décidé de partager la traduction avec la communauté.



Dans cet article, nous expliquerons le concept de base et l'utilisation générale du regroupement RoI ( région d'intérêt ) et fournirons une implémentation à l'aide des couches TensorFlow Keras.



Le public cible de cet article est constitué de personnes familiarisées avec la théorie de base des réseaux de neurones (convolutionnels) (CNN) et capables de créer et d'exécuter des modèles simples à l'aide de Keras .



Si vous n'êtes ici que pour le code, vérifiez ici et n'oubliez pas d'aimer et de partager l'article!



Comprendre la mutualisation RoI



RoI Pooling a été proposé par Ross Girshik dans l'article de Fast R-CNN dans le cadre de son pipeline de reconnaissance d'objets.



Dans un cas d'utilisation général de RoI Pooling , nous avons un objet de type image et plusieurs régions d'intérêt ( RoI ) spécifiées via des boîtes englobantes. Nous voulons créer des plongements (plongements - mappage d'une entité arbitraire (un morceau d'une image) à un certain vecteur) à partir de chaque RoI.



Par exemple, dans une configuration R-CNN, nous avons une image et un moteur de mise en évidence de région candidate qui crée des cadres de délimitation pour les parties potentiellement intéressantes de l'image. Nous souhaitons maintenant créer une incrustation pour chaque élément suggéré de l'image.



mise en évidence des régions candidates dans l'image



Recadrer simplement chaque zone suggérée ne fonctionnera pas car nous voulons superposer les plongements résultants les uns sur les autres, et les zones suggérées n'ont pas nécessairement la même forme!



, . ?



- (pooling).



max pooling, ( ) , , .



L'opération maxpool divise chaque zone en pools de même taille



maxpool

, – : .



. RoI ?



L'opération de regroupement ROI divise les parties de regroupement de l'image avec une grille de taille égale.



ROI Pooling , pooling.

, ROI Pooling.



RoI Pooling.



RoI Pooling — . , RoI, . , .

-, ( RoI Pooling ), ( ), (end-to-end) (single-pass) .



R-CNN rapide démontrant la mutualisation RoI par Ross Girshik



Fast R-CNN, RoI Pooling,

, R-CNN , (RoI). RoI Pooling CNN . .

-, -, RoI Pooling (visual attention).



Attentional Network for Visual Object Detection, démontrant le ROI Pooling, par Hara et al.



Attentional Network , ROI Pooling, Hara ..

Attentional Network , Hara attention, ROI ROI Pooling. (t = 1), ROI Pooling (Fully Connected). Glimpse () (t = 2) , ROI Pooling. .



.



, , ROI.



:



  • (batch) . , . (batch_size, img_width, img_height, n_channels), batch_size- , img_width — , img_height — , n_channels — .
  • (batch) ROI. , - . 4 , (batch_size, n_rois, 4), batch_size — ROI, n_rois — ROI.


:



  • , ROI. (batch_size, n_rois, pooled_width, pooled_height, n_channels). batch_size- , n_rois — ROI, pooled_width — , pooled_height— , n_channels — .


Keras



Keras Layer.



tf.keras init, build call . , build , , . compute_output_shape.



, .



def __init__(self, pooled_height, pooled_width, **kwargs):
    self.pooled_height = pooled_height
    self.pooled_width = pooled_width
    super(ROIPoolingLayer, self).__init__(**kwargs)


. , . .



def compute_output_shape(self, input_shape):
    """ Returns the shape of the ROI Layer output
    """
    feature_map_shape, rois_shape = input_shape
    assert feature_map_shape[0] == rois_shape[0]
    batch_size = feature_map_shape[0]
    n_rois = rois_shape[1]
    n_channels = feature_map_shape[3]
    return (batch_size, n_rois, self.pooled_height, 
            self.pooled_width, n_channels)


compute_output_shape — , , .



(call). — , . , ROI Pooling, .



, , ROI .



.



@staticmethod
def _pool_roi(feature_map, roi, pooled_height, pooled_width):
  """ Applies ROI Pooling to a single image and a single ROI
  """# Compute the region of interest        
  feature_map_height = int(feature_map.shape[0])
  feature_map_width  = int(feature_map.shape[1])

  h_start = tf.cast(feature_map_height * roi[0], 'int32')
  w_start = tf.cast(feature_map_width  * roi[1], 'int32')
  h_end   = tf.cast(feature_map_height * roi[2], 'int32')
  w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

  region = feature_map[h_start:h_end, w_start:w_end, :]
...


, .



, ROI , 0 1. , ROI 4- , (x_min, y_min, x_max, y_max ).

ROI , , , : , , ROI Pooling, , , ROI.



, TensorFlow.



...
# Divide the region into non overlapping areas
region_height = h_end - h_start
region_width  = w_end - w_start
h_step = tf.cast(region_height / pooled_height, 'int32')
w_step = tf.cast(region_width  / pooled_width , 'int32')

areas = [[(
           i*h_step, 
           j*w_step, 
           (i+1)*h_step if i+1 < pooled_height else region_height, 
           (j+1)*w_step if j+1 < pooled_width else region_width
          ) 
          for j in range(pooled_width)] 
         for i in range(pooled_height)]
...


ROI, .



2D , , , .



, , , , ROI (region_height // pooled_height, region_width // pooled_width), ROI, .



2D , .



...
# Take the maximum of each area and stack the result
def pool_area(x): 
  return tf.math.reduce_max(region[x[0]:x[2],x[1]:x[3],:], axis=[0,1])

pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
return pooled_features


. pool_area, , , , , .

pool_area , , list comprehension .



(pooled_height, pooled_width, n_channels), RoI .



— RoI . tf.map_fn (n_rois, pooled_height, pooled_width, n_channels).



@staticmethod
def _pool_rois(feature_map, rois, pooled_height, pooled_width):
  """ Applies ROI pooling for a single image and varios ROIs
  """
  def curried_pool_roi(roi): 
    return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                     pooled_height, pooled_width)

  pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
  return pooled_areas


, . tf.map_fn (, x), , .



def call(self, x):
  """ Maps the input tensor of the ROI layer to its output
  """
  def curried_pool_rois(x): 
    return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                      self.pooled_height, 
                                      self.pooled_width)

  pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)
  return pooled_areas


, dtype tf.map_fn , . , , , Tensorflow.



:



import tensorflow as tf
from tensorflow.keras.layers import Layer

class ROIPoolingLayer(Layer):
    """ Implements Region Of Interest Max Pooling 
        for channel-first images and relative bounding box coordinates

        # Constructor parameters
            pooled_height, pooled_width (int) -- 
              specify height and width of layer outputs

        Shape of inputs
            [(batch_size, pooled_height, pooled_width, n_channels),
             (batch_size, num_rois, 4)]

        Shape of output
            (batch_size, num_rois, pooled_height, pooled_width, n_channels)

    """
    def __init__(self, pooled_height, pooled_width, **kwargs):
        self.pooled_height = pooled_height
        self.pooled_width = pooled_width

        super(ROIPoolingLayer, self).__init__(**kwargs)

    def compute_output_shape(self, input_shape):
        """ Returns the shape of the ROI Layer output
        """
        feature_map_shape, rois_shape = input_shape
        assert feature_map_shape[0] == rois_shape[0]
        batch_size = feature_map_shape[0]
        n_rois = rois_shape[1]
        n_channels = feature_map_shape[3]
        return (batch_size, n_rois, self.pooled_height, 
                self.pooled_width, n_channels)

    def call(self, x):
        """ Maps the input tensor of the ROI layer to its output

            # Parameters
                x[0] -- Convolutional feature map tensor,
                        shape (batch_size, pooled_height, pooled_width, n_channels)
                x[1] -- Tensor of region of interests from candidate bounding boxes,
                        shape (batch_size, num_rois, 4)
                        Each region of interest is defined by four relative 
                        coordinates (x_min, y_min, x_max, y_max) between 0 and 1
            # Output
                pooled_areas -- Tensor with the pooled region of interest, shape
                    (batch_size, num_rois, pooled_height, pooled_width, n_channels)
        """
        def curried_pool_rois(x): 
          return ROIPoolingLayer._pool_rois(x[0], x[1], 
                                            self.pooled_height, 
                                            self.pooled_width)

        pooled_areas = tf.map_fn(curried_pool_rois, x, dtype=tf.float32)

        return pooled_areas

    @staticmethod
    def _pool_rois(feature_map, rois, pooled_height, pooled_width):
        """ Applies ROI pooling for a single image and varios ROIs
        """
        def curried_pool_roi(roi): 
          return ROIPoolingLayer._pool_roi(feature_map, roi, 
                                           pooled_height, pooled_width)

        pooled_areas = tf.map_fn(curried_pool_roi, rois, dtype=tf.float32)
        return pooled_areas

    @staticmethod
    def _pool_roi(feature_map, roi, pooled_height, pooled_width):
        """ Applies ROI pooling to a single image and a single region of interest
        """

        # Compute the region of interest        
        feature_map_height = int(feature_map.shape[0])
        feature_map_width  = int(feature_map.shape[1])

        h_start = tf.cast(feature_map_height * roi[0], 'int32')
        w_start = tf.cast(feature_map_width  * roi[1], 'int32')
        h_end   = tf.cast(feature_map_height * roi[2], 'int32')
        w_end   = tf.cast(feature_map_width  * roi[3], 'int32')

        region = feature_map[h_start:h_end, w_start:w_end, :]

        # Divide the region into non overlapping areas
        region_height = h_end - h_start
        region_width  = w_end - w_start
        h_step = tf.cast( region_height / pooled_height, 'int32')
        w_step = tf.cast( region_width  / pooled_width , 'int32')

        areas = [[(
                    i*h_step, 
                    j*w_step, 
                    (i+1)*h_step if i+1 < pooled_height else region_height, 
                    (j+1)*w_step if j+1 < pooled_width else region_width
                   ) 
                   for j in range(pooled_width)] 
                  for i in range(pooled_height)]

        # take the maximum of each area and stack the result
        def pool_area(x): 
          return tf.math.reduce_max(region[x[0]:x[2], x[1]:x[3], :], axis=[0,1])

        pooled_features = tf.stack([[pool_area(x) for x in row] for row in areas])
        return pooled_features


! , 1- 100x200, 2 RoI, 7x3. , 4 . — 1, 50 (-1, -3).



import numpy as np# Define parameters
batch_size = 1
img_height = 200
img_width = 100
n_channels = 1
n_rois = 2
pooled_height = 3
pooled_width = 7# Create feature map input
feature_maps_shape = (batch_size, img_height, img_width, n_channels)
feature_maps_tf = tf.placeholder(tf.float32, shape=feature_maps_shape)
feature_maps_np = np.ones(feature_maps_tf.shape, dtype='float32')
feature_maps_np[0, img_height-1, img_width-3, 0] = 50
print(f"feature_maps_np.shape = {feature_maps_np.shape}")# Create batch size
roiss_tf = tf.placeholder(tf.float32, shape=(batch_size, n_rois, 4))
roiss_np = np.asarray([[[0.5,0.2,0.7,0.4], [0.0,0.0,1.0,1.0]]], dtype='float32')
print(f"roiss_np.shape = {roiss_np.shape}")# Create layer
roi_layer = ROIPoolingLayer(pooled_height, pooled_width)
pooled_features = roi_layer([feature_maps_tf, roiss_tf])
print(f"output shape of layer call = {pooled_features.shape}")# Run tensorflow session
with tf.Session() as session:
    result = session.run(pooled_features, 
                         feed_dict={feature_maps_tf:feature_maps_np,  
                                    roiss_tf:roiss_np})

print(f"result.shape = {result.shape}")
print(f"first  roi embedding=\n{result[0,0,:,:,0]}")
print(f"second roi embedding=\n{result[0,1,:,:,0]}")


, TensorFlow, .



:



feature_maps_np.shape = (1, 200, 100, 1)
roiss_np.shape = (1, 2, 4)
output shape of layer call = (1, 2, 3, 7, 1)
result.shape = (1, 2, 3, 7, 1)
first  roi embedding=
[[1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1. 1.]]
second roi embedding=
[[ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1. 50.]]


, . — 1, , 50.



, !





, !



, ROI Pooling (attention). , , Keras , ROI Pooling .



, , , !



Ari Brill, Tjark Miener Bryan Kim .








All Articles