Spring: accélérer l'écriture de bases de données avec XML

salut!



Cet article explique comment accélérer l'écriture de grandes quantités d'informations dans une base de données relationnelle pour les applications écrites à l'aide de Spring Boot. Lors de l'écriture d'un grand nombre de lignes à la fois, Hibernate les insère une à la fois, ce qui entraîne une attente importante s'il y a beaucoup de lignes. Prenons un cas pour contourner ce problème.



Nous utilisons l'application Spring Boot. En tant que SGBD -> MS SQL Server, en tant que langage de programmation - Kotlin. Bien sûr, il n'y aura aucune différence pour Java.



Entité pour les données que nous devons écrire:



@Entity
@Table(schema = BaseEntity.schemaName, name = GoodsPrice.tableName)
data class GoodsPrice(

        @Id
        @Column(name = "GoodsPriceId")
        @GeneratedValue(strategy =  GenerationType.IDENTITY)
        override val id: Long,

        @Column(name = "GoodsId")
        val goodsId: Long,

        @Column(name = "Price")
        val price: BigDecimal,

        @Column(name = "PriceDate")
        val priceDate: LocalDate
): BaseEntity(id) {
        companion object {
                const val tableName: String = "GoodsPrice"
        }
}


SQL:



CREATE TABLE [dbo].[GoodsPrice](
	[GoodsPriceId] [int] IDENTITY(1,1) NOT NULL,
	[GoodsId] [int] NOT NULL,
	[Price] [numeric](18, 2) NOT NULL,
	[PriceDate] nvarchar(10) NOT NULL,
 CONSTRAINT [PK_GoodsPrice] PRIMARY KEY(GoodsPriceId))


À titre d'exemple de démonstration, nous supposerons que nous devons enregistrer 20 000 et 50 000 enregistrements chacun.



Créons un contrôleur qui générera des données et les transférera pour l'enregistrement et consignera l'heure:



@RestController
@RequestMapping("/api")
class SaveDataController(private val goodsPriceService: GoodsPriceService) {

    @PostMapping("/saveViaJPA")
    fun saveDataViaJPA(@RequestParam count: Int) {
        val timeStart = System.currentTimeMillis()
        goodsPriceService.saveAll(prepareData(count))
        val secSpent = (System.currentTimeMillis() - timeStart) / 60
        logger.info("Seconds spent : $secSpent")
    }

    private fun prepareData(count: Int) : List<GoodsPrice> {
        val prices = mutableListOf<GoodsPrice>()
        for (i in 1..count) {
            prices.add(GoodsPrice(
                    id = 0L,
                    priceDate = LocalDate.now().minusDays(i.toLong()),
                    goodsId = 1L,
                    price = BigDecimal.TEN
            ))
        }
        return prices
    }
    companion object {
        private val logger = LoggerFactory.getLogger(SaveDataController::class.java)
    }
}


Nous allons également créer un service d'écriture de données et un référentiel GoodsPriceRepository



@Service
class GoodsPriceService(
        private val goodsPriceRepository: GoodsPriceRepository
) {

    private val xmlMapper: XmlMapper = XmlMapper()

    fun saveAll(prices: List<GoodsPrice>) {
        goodsPriceRepository.saveAll(prices)
    }
}


Après cela, nous appellerons séquentiellement notre méthode saveDataViaJPA pour 20 000 enregistrements et 50 000 enregistrements.



Console:



Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
Hibernate: insert into dbo.GoodsPrice (GoodsId, Price, PriceDate) values (?, ?, ?)
2020-11-10 19:11:58.886  INFO 10364 --- [  restartedMain] xmlsave.controller.SaveDataController    : Seconds spent : 63


Le problème est qu'Hibernate a essayé d'insérer chaque ligne dans une requête distincte, c'est-à-dire 20 000 fois. Et sur ma machine, cela a pris 63 secondes.



Pour 50000 entrées 166 sec.



Solution



Que peut-on faire? L'idée principale est que nous écrirons dans la table des tampons:



@Entity
@Table(schema = BaseEntity.schemaName, name = SaveBuffer.tableName)
data class SaveBuffer(

        @Id
        @Column(name = "BufferId")
        @GeneratedValue(strategy =  GenerationType.IDENTITY)
        override val id: Long,

        @Column(name = "UUID")
        val uuid: String,

        @Column(name = "xmlData")
        val xmlData: String
): BaseEntity(id) {
        companion object {
                const val tableName: String = "SaveBuffer"
        }
}


Script SQL pour la table dans la base de données



CREATE TABLE [dbo].[SaveBuffer](
	[BufferId] [int] IDENTITY NOT NULL,
	[UUID] [varchar](64) NOT NULL,
	[xmlData] [xml] NULL,
 CONSTRAINT [PK_SaveBuffer] PRIMARY KEY (BufferId))


Ajoutez une méthode à SaveDataController:



@PostMapping("/saveViaBuffer")
    fun saveViaBuffer(@RequestParam count: Int) {
        val timeStart = System.currentTimeMillis()
        goodsPriceService.saveViaBuffer(prepareData(count))
        val secSpent = (System.currentTimeMillis() - timeStart) / 60
        logger.info("Seconds spent : $secSpent")
    }


Ajoutons également une méthode au GoodsPriceService:



@Transactional
    fun saveViaBuffer(prices: List<GoodsPrice>) {
        val uuid = UUID.randomUUID().toString()
        val values = prices.map {
            BufferDTO(
                    goodsId = it.goodsId,
                    priceDate = it.priceDate.format(DateTimeFormatter.ISO_DATE),
                    price = it.price.stripTrailingZeros().toPlainString()
            )
        }
        bufferRepository.save(
                    SaveBuffer(
                            id = 0L,
                            uuid = uuid,
                            xmlData = xmlMapper.writeValueAsString(values)
                    )
            )
        goodsPriceRepository.saveViaBuffer(uuid)
        bufferRepository.deleteAllByUuid(uuid)
    }


Pour écrire, nous générons d'abord un uuid unique pour distinguer les données actuelles que nous écrivons. Ensuite, nous écrivons nos données dans le tampon créé avec du texte sous la forme de xml. Autrement dit, il n'y aura pas 20 000 insertions, mais seulement 1.



Et après cela, nous transférons les données du tampon à la table GoodsPrice avec une requête comme Insérer dans… sélectionner.



GoodsPriceRepository avec la méthode saveViaBuffer:



@Repository
interface GoodsPriceRepository: JpaRepository<GoodsPrice, Long> {
    @Modifying
    @Query("""
    insert into dbo.GoodsPrice(
	GoodsId,
	Price,
	PriceDate
	)
	select res.*
	from dbo.SaveBuffer buffer
		cross apply(select temp.n.value('goodsId[1]', 'int') as GoodsId
			, temp.n.value('price[1]', 'numeric(18, 2)') as Price
			, temp.n.value('priceDate[1]', 'nvarchar(10)') as PriceDate
			from buffer.xmlData.nodes('/ArrayList/item') temp(n)) res
			where buffer.UUID = :uuid
    """, nativeQuery = true)
    fun saveViaBuffer(uuid: String)
}


Et à la fin, afin de ne pas stocker les informations en double dans la base de données, nous supprimons les données du tampon par uuid.



Appelons notre méthode saveViaBuffer pour 20 000 lignes et 50 000 lignes:



Hibernate: insert into dbo.SaveBuffer (UUID, xmlData) values (?, ?)
Hibernate: insert into dbo.SaveBuffer (UUID, xmlData) values (?, ?)
Hibernate: insert into dbo.SaveBuffer (UUID, xmlData) values (?, ?)
Hibernate: insert into dbo.SaveBuffer (UUID, xmlData) values (?, ?)
Hibernate: 
    insert into dbo.GoodsPrice(
	GoodsId,
	Price,
	PriceDate
	)
	select res.*
	from dbo.SaveBuffer buffer
		cross apply(select temp.n.value('goodsId[1]', 'int') as GoodsId
			, temp.n.value('price[1]', 'numeric(18, 2)') as Price
			, temp.n.value('priceDate[1]', 'nvarchar(10)') as PriceDate
			from buffer.xmlData.nodes('/ArrayList/item') temp(n)) res
			where buffer.UUID = ?
    
Hibernate: select savebuffer0_.BufferId as bufferid1_1_, savebuffer0_.UUID as uuid2_1_, savebuffer0_.xmlData as xmldata3_1_ from dbo.SaveBuffer savebuffer0_ where savebuffer0_.UUID=?
Hibernate: delete from dbo.SaveBuffer where BufferId=?
Hibernate: delete from dbo.SaveBuffer where BufferId=?
Hibernate: delete from dbo.SaveBuffer where BufferId=?
Hibernate: delete from dbo.SaveBuffer where BufferId=?
2020-11-10 20:01:58.788  INFO 7224 --- [  restartedMain] xmlsave.controller.SaveDataController    : Seconds spent : 13


Comme vous pouvez le voir d'après les résultats, nous avons obtenu une accélération significative de l'enregistrement des données.

Pour 20 000 enregistrements, 13 secondes étaient 63.

Pour 50 000 enregistrements, 27 secondes étaient 166.



Lien vers le projet de test



All Articles