Dans cette Ă©tude, je voulais voir quelles amĂ©liorations de performances peuvent ĂȘtre obtenues en utilisant une source de donnĂ©es ClickHouse plutĂŽt que PostgreSQL. Je connais les avantages de performance que j'obtiens en utilisant ClickHouse. Ces avantages persisteront-ils si j'accĂšde Ă ClickHouse depuis PostgreSQL Ă l'aide d'un wrapper de donnĂ©es externe (FDW)?
Les environnements de base de donnĂ©es Ă©tudiĂ©s sont PostgreSQL v11, clickhousedb_fdw et la base de donnĂ©es ClickHouse. En fin de compte, Ă partir de PostgreSQL v11, nous exĂ©cuterons diverses requĂȘtes SQL acheminĂ©es via notre clickhousedb_fdw vers la base de donnĂ©es ClickHouse. Ensuite, nous verrons comment les performances de FDW se comparent aux mĂȘmes requĂȘtes exĂ©cutĂ©es dans PostgreSQL natif et ClickHouse natif.
Base de données Clickhouse
ClickHouse est un systÚme de gestion de base de données open source basé sur des colonnes qui peut atteindre des performances 100 à 1000 fois plus rapides que les approches de base de données traditionnelles, capable de traiter plus d'un milliard de lignes en moins d'une seconde.
Clickhousedb_fdw
clickhousedb_fdw - ClickHouse External Database Wrapper, ou FDW, est un projet open source de Percona. Voici un lien vers le référentiel GitHub du projet .
En mars, j'ai Ă©crit un blog qui vous en dit plus sur notre FDW .
Comme vous le verrez, cela fournit FDW pour ClickHouse, qui permet SELECT et INSERT INTO, une base de données ClickHouse du serveur PostgreSQL v11.
FDW , aggregate join. .
Benchmark environment
- Supermicro server:
- IntelÂź XeonÂź CPU E5-2683 v3 @ 2.00GHz
- 2 sockets / 28 cores / 56 threads
- Memory: 256GB of RAM
- Storage: Samsung SM863 1.9TB Enterprise SSD
- Filesystem: ext4/xfs
- OS: Linux smblade01 4.15.0-42-generic #45~16.04.1-Ubuntu
- PostgreSQL: version 11
Benchmark tests
, - , , , « , » 1987 2018 . , .
85 , 109 .
Benchmark Queries
, ClickHouse, clickhousedb_fdw PostgreSQL.
Q# | Query Contains Aggregates and Group By |
---|---|
Q1 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q2 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q3 | SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10; |
Q4 | SELECT Carrier, count() FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count() DESC; |
Q5 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year=2007 GROUP BY Carrier ) a INNER JOIN ( SELECT Carrier,count(*) AS c2 FROM ontime WHERE Year=2007 GROUP BY Carrier)b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q6 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Carrier) a INNER JOIN ( SELECT Carrier, count(*) AS c2 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier ) b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q7 | SELECT Carrier, avg(DepDelay) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier; |
Q8 | SELECT Year, avg(DepDelay) FROM ontime GROUP BY Year; |
Q9 | select Year, count(*) as c1 from ontime group by Year; |
Q10 | SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month) a; |
Q11 | select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month) a; |
Q12 | SELECT OriginCityName, DestCityName, count(*) AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10; |
Q13 | SELECT OriginCityName, count(*) AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10; |
Query Contains Joins | |
Q14 | SELECT a.Year, c1/c2 FROM ( select Year, count()1000 as c1 from ontime WHERE DepDelay>10 GROUP BY Year) a INNER JOIN (select Year, count(*) as c2 from ontime GROUP BY Year ) b on a.Year=b.Year ORDER BY a.Year; |
Q15 | SELECT a.âYearâ, c1/c2 FROM ( select âYearâ, count()1000 as c1 FROM fontime WHERE âDepDelayâ>10 GROUP BY âYearâ) a INNER JOIN (select âYearâ, count(*) as c2 FROM fontime GROUP BY âYearâ ) b on a.âYearâ=b.âYearâ; |
Table-1: Queries used in benchmark
Query executions
: PostgreSQL , ClickHouse clickhousedb_fdw. .
Q# | PostgreSQL | PostgreSQL (Indexed) | ClickHouse | clickhousedb_fdw |
---|---|---|---|---|
Q1 | 27920 | 19634 | 23 | 57 |
Q2 | 35124 | 17301 | 50 | 80 |
Q3 | 34046 | 15618 | 67 | 115 |
Q4 | 31632 | 7667 | 25 | 37 |
Q5 | 47220 | 8976 | 27 | 60 |
Q6 | 58233 | 24368 | 55 | 153 |
Q7 | 30566 | 13256 | 52 | 91 |
Q8 | 38309 | 60511 | 112 | 179 |
Q9 | 20674 | 37979 | 31 | 81 |
Q10 | 34990 | 20102 | 56 | 148 |
Q11 | 30489 | 51658 | 37 | 155 |
Q12 | 39357 | 33742 | 186 | 1333 |
Q13 | 29912 | 30709 | 101 | 384 |
Q14 | 54126 | 39913 | 124 | 1364212 |
Q15 | 97258 | 30211 | 245 | 259 |
Table-1: Time taken to execute the queries used in benchmark
, X , Y . ClickHouse , postgres clickhousedb_fdw, . , PostgreSQL ClickHouse, ClickHouse clickhousedb_fdw.
ClickhouseDB clickhousedb_fdw. FDW , Q12. ORDER BY. - ORDER BY GROUP/BY ORDER BY ClickHouse.
2 Q12 Q13. , ORDER BY. , Q-14 Q-15 ORDER BY . ORDER BY 259 , ORDER BY â 1364212. , .
Q15: Without ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2
FROM (SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) AS c2 FROM fontime GROUP BY "Year") b ON a."Year"=b."Year";
Q15: Query Without ORDER BY Clause
QUERY PLAN
Hash Join (cost=2250.00..128516.06 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / b.c2)
Inner Unique: true Hash Cond: (fontime."Year" = b."Year")
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime."Year", ((count(*) * 1000))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", (count(*) * 1000) FROM "default".ontime WHERE (("DepDelay" > 10)) GROUP BY "Year"
-> Hash (cost=999.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Subquery Scan on b (cost=1.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime_1."Year", (count(*))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", count(*) FROM "default".ontime GROUP BY "Year"(16 rows)
Q14: Query With ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2 FROM(SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) as c2 FROM fontime GROUP BY "Year") b ON a."Year"= b."Year"
ORDER BY a."Year";
Q14: Query Plan with ORDER BY Clause
QUERY PLAN
Merge Join (cost=2.00..628498.02 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / (count(*)))
Inner Unique: true Merge Cond: (fontime."Year" = fontime_1."Year")
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime."Year", (count(*) * 1000)
Group Key: fontime."Year"
-> Foreign Scan on public.fontime (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime WHERE (("DepDelay" > 10))
ORDER BY "Year" ASC
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime_1."Year", count(*) Group Key: fontime_1."Year"
-> Foreign Scan on public.fontime fontime_1 (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime ORDER BY "Year" ASC(16 rows)
, ClickHouse , clickhousedb_fdw ClickHouse PostgreSQL. clickhousedb_fdw , , ClickHouse. , fdw PostgreSQL .
Clickhouse https://t.me/clickhouse_ru
PostgreSQL https://t.me/pgsql